a2 United States Patent

Hettiaratchi

US009047080B1

US 9,047,080 B1
*Jun. 2, 2015

(10) Patent No.:
(45) Date of Patent:

(54) COMPRESSION OF PROCESSOR
INSTRUCTIONS

(75) Inventor: Sambuddhi Hettiaratchi, High

Wycombe (GB)
(73) Assignee: Altera Corporation, San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 596 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 13/052,613
(22) Filed: Mar. 21,2011
Related U.S. Application Data

(63) Continuation of application No. 11/588,100, filed on
Oct. 25, 2006, now Pat. No. 7,913,065.

(51) Int.CL

GO6F 9/30 (2006.01)
(52) US.CL

CPC i GO6F 9/30145 (2013.01)
(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,779,101 Bl 8/2004 Berget al.
7,409,530 B2 8/2008 Kim et al.
OTHER PUBLICATIONS

Aditya, S.B., et al., “Automatic Design of VLIW and EPIC Instruc-
tion Formats,” HP Laboratories Palo Alto, HP1.-1999-94, Apr. 2000,
110 pages.

Colwell, R.P, et al., “A VLIW Architecture for a Trace Scheduling
Compiler,” Multiflow Computer, 1987, pp. 180-192.

Heikkinen, J., et al., “Code Compression on Transport Triggered
Architectures,” Institute of Digital and Computer Systems, 10 pages.
Heikkinen, J., et al., “Dictionary-Based Program Compression on
Transport Triggered Architectures,” Tampere University of Technol-
ogy, 4 pages.

Hennessy, J.L., et al., “Computer Organization and Design: The
Hardware/Software Interface,” 2nd Edition, Morgan Kaufmann Pub-
lishers, San Francisco, CA., 1998, pp. 466-476.

Nam, S.-J., et al., “Improving Dictionary-Based Code Compression
in VLIW Architectures,” IEICE Trans. Fundamentals, vol. E82-A,
No. 11, Nov. 1999, pp. 2318-2324.

Suzuki, H., et al., “Novel VLIW Code Compaction Method for a 3D
Geometry Processor,” IEEE Custom Integrated Circuits Conference,
2000, pp. 555-558.

Xie, Y., etal., “Code Compression for VLIW Processors Using Vari-
able-to-Fixed Coding,” Electrical Engineering Dept., Princeton Uni-
versity, Princeton, NJ, Oct. 2002, pp. 138-143.

Heikkinen, J. et al., “Code Compression on Transport Triggered
Architectures,” International Workshop on System-on-Chip for Real-
Time Applications, 2002, 10 pages.

(Continued)

Primary Examiner — Jacob A Petranek
(74) Attorney, Agent, or Firm — Ropes & Gray LLP

(57) ABSTRACT

A custom processor is adapted for performing at least one
predetermined application. The instruction sequence for the
custom processor is compressed by performing at least one
identification process on the instructions of the instruction
sequence, in order to identify relationships between the con-
tents of the bit positions in the instructions. A compressed
instruction sequence then includes one compressed instruc-
tion corresponding to each instruction of the predetermined
instruction sequence, with each compressed instruction com-
prising a reduced number of bits, based on the identified
relationships between the contents of said bit positions in said
instructions of said predetermined instruction sequence.

21 Claims, 3 Drawing Sheets

CBO CBt €82
90
W[
NOT Ek
y \ 4 4 ¥ \ 4 y
B0 B1 B2 B3 B4 BS

US 9,047,080 B1
Page 2

(56) References Cited
OTHER PUBLICATIONS

Heikkinen, J. et al., “Dictionary-Based Program Compression on
Transport Triggered Architectures,” Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), vol. 2, May
23-26, 2005, pp. 1122-1125.

Heikkinen, J. et al., “Evaluating Template-Based Instruction Com-
pression on Transport Triggered Architectures,” Proceedings of 3rd
IEEE International Workshop on System-on-Chip for Real-Time
Applications, Jun. 30-Jul. 2, 2003, pp. 192-195.

Jackson, R. et al., “Reconfigurable Radio With FPGA-Based Appli-
cation-Specific Processors,” Proceedings of the SDR 04 Technical
Conference and Product Exposition, 2004, 4 pages.

U.S. Patent Jun. 2, 2015 Sheet 1 of 3 US 9,047,080 B1

PLD N 40
MEMORY /___\\
14
ARRAY
ELEMENTS
T
12
Figure 1
30 ‘\
TR
L~
52 FU1 Fu2 34
r.
Program]
Counter IR ;
b~
A Mux T 36 40
|
Program ;)
Memory o
v /"54 MEM1 —\ T
¢ 38
Decoder -
IR X
Mux
[42
1 .
.
RF1 4
]

Figure 2

U.S. Patent

Jun. 2, 2015

Sheet 2 of 3

Receive Instruction Set /\70
Y
Identify Bits Stuck at Zero "'\72
Identify Bits Stuck at One /'"\74
Y
Identify Groups of Bits always | .—
the same 76
4
identify Groups of Bits always |~
different 78
A 4
Remove bils Stuck at Zero or |~
One 80
y
Organise Remaining Bits into |~
*same as” Groups 82
h 4
Find Bits Opposite the “same |~
as" Groups 84
A4
Store Compressed L~
Instructions 86

Figure 3

US 9,047,080 B1

U.S. Patent Jun. 2, 2015 Sheet 3 of 3 US 9,047,080 B1
CBO CB1 cB2
90
o
NOT Y
y h 4 4 A h 4 y
80 B1 B2 B3 B4 BS

Figure 4

US 9,047,080 B1

1
COMPRESSION OF PROCESSOR
INSTRUCTIONS

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation of, commonly-assigned U.S. patent
application Ser. No. 11/588,100, filed Oct. 25, 2006 and now
U.S. Pat. No. 7,913,065, which is hereby incorporated by
reference herein in its entirety.

BACKGROUND OF THE INVENTION

This invention relates to a processor, and in particular to the
compression of instructions used by the processor.

In order to operate a processor, it is necessary to store a set
ofinstructions for the operation ofthe processor. That is, there
is typically associated with a processor a memory, which can
be used to store the instructions that the processor will use. In
some environments, the storage of these instructions can
occupy a significant part of the available memory resources.
Itis known that it can be advantageous to apply some form of
compression to the instructions where possible. Programs are
stored into the memory in compressed format, then decom-
pressed in the instruction decoding phase, and then executed
in the processor.

It has been noted, in the document “Code Compression on
Transport Triggered Architectures™, J. Heikkinen et al., Proc.
Int. Workshop on System-on-Chip for Real-Time Applica-
tions, Banff, Canada, Jul. 6-7, 2002, pp. 186-195, that, in
some applications, information is available about the prob-
abilities of occurrence of each possible instruction. This
information can be used to increase the efficiency of the
coding of the instructions by using a form of entropy coding.
That is. Instructions that are expected to occur more fre-
quently are encoded to a shorter code, while instructions that
are expected to occur less frequently are encoded to a longer
code, with the result that the average code length is reduced.

SUMMARY OF THE INVENTION

There are also processors that are intended to perform one
specific application, or a group of applications. In the case of
such an application specific processor (ASP), also referred to
as an application specific instruction set processor (ASIP) or
custom processor, the instruction sequence, or the possible
instruction sequences if the processor is intended to perform
a group of applications, is known in advance.

According to the present invention, this knowledge is
exploited to allow the instructions to be compressed in a
manner that is less complex, but potentially more efficient.

Specifically, according to an aspect of the invention, a
method of storing an instruction sequence for a custom pro-
cessor comprises receiving a predetermined instruction
sequence, each instruction of said predetermined instruction
sequence comprising a first number of bits in respective bit
positions, and performing at least one identification process
onsaid instructions, in order to identify relationships between
the contents of said bit positions in said instructions of said
predetermined instruction sequence, in order to allow a com-
pressed instruction sequence to be generated.

According to another aspect of the invention, there is pro-
vided a processor, for performing at least one predetermined
application, wherein the processor comprises a decoder and
the decoder comprises: an input for receiving a first number of
bits of compressed instructions; logic circuitry for converting
said received first number of bits into a second number of bits

10

15

20

25

30

35

40

45

50

55

60

65

2

of uncompressed instructions, said second number being
greater than said first number; and an output for supplying
said uncompressed instructions to be acted upon by said
processor.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block schematic diagram of a programmable
logic device in accordance with the present invention.

FIG. 2 is a block schematic diagram illustrating the func-
tional components of a processor in accordance with the
present invention.

FIG. 3 is a flow chart illustrating a method in accordance
with the present invention.

FIG. 4 is a schematic diagram illustrating a decoder in the
processor of FIG. 2

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 illustrates a programmable logic device (PLD) 10,
for example in the form of a Field Programmable Gate Array
(FPGA). In the illustrated PLD 10, there is an array 12 of
processing elements and separate memory 14, although it will
be appreciated that the invention is applicable to any type of
device.

As is well known, a programmable logic device can be
configured to perform a wide range of operations. That is, the
interconnections between the array elements 12, and their
functionality, are determined by configuration data, which is
supplied to the device from a configuration memory (not
shown in FIG. 1).

One possible use for a programmable logic device, such as
the PLD 10, is to perform digital signal processing opera-
tions.

Where the digital signal processing operations are suitable,
the PLD 10 can be configured to form an Application Specific
Processor (ASP), using a Transport Triggered Architecture
(TTA). This type of processor is particularly suitable when
the functionality of the processor is known in advance. That
is, when the processor is required to perform the same appli-
cation, or the same limited set of applications, it can effi-
ciently be configured to form an Application Specific Proces-
sor, rather than being configured such that it is able to perform
awide range of applications. When the digital signal process-
ing operations require large amounts of data to be handled in
parallel, a Transport Triggered Architecture (TTA) allows the
data to be processed efficiently.

FIG. 2 is a block schematic diagram, illustrating a proces-
sor 30 having a Transport Triggered Architecture, in accor-
dance with an aspect of the present invention. It will be
understood that the PL.D 10 can be configured to form the
processor 30 by means of appropriate configuration data,
causing the array elements 12 and the memory 14 to be
interconnected in such a way as to provide the required func-
tionality shown in, and described with reference, to FIG. 2.

A TTA based custom processor includes a number of func-
tion units connected by a data transport network. The function
units can for example be adders, multipliers, register files,
memories, input/output units, multiplexers, combinational
functions etc. Each function unit has a control input, for
receiving program instructions.

Specifically, in the illustrative example shown in FIG. 2,
the processor 30 includes a first functional unit (FU1) 32 and
a second functional unit (FU2) 34, for performing some par-
ticular (unspecified in FIG. 2) functions on some data, with
the outputs of the first and second functional units 32, 34
being applied to a first multiplexer 36, with the output of the

US 9,047,080 B1

3

first multiplexer 36 being applied to a first memory (MEM1)
38. The output of the second functional unit 34 is also applied
to an input/output (I0) device 40, with the output of the first
multiplexer 38 and two output lines from the input/output
(I0) device 40 being applied to a second multiplexer 42,
whose output is applied to a first register file (RF1) 44, and
whose output in turn is applied to the first and second func-
tional units 32, 34.

The processor 30 operates on the basis of a series of
instructions, stored in compressed form ina program memory
50. The program memory steps through the stored instruc-
tions based on an input from a program counter 52.

The processor supports only one type of processing opera-
tion, namely a move operation, which transports data from a
source to a destination. The data can then be processed in the
destination function unit. The ability of the processor to
handle data in parallel is determined by the number of such
move operations that can be performed at the same time.
Thus, for each time period, there exists an instruction word,
potentially containing either a relevant move instruction, or
an operand for that time period, for each of the function units.

The instruction word for each time period is then supplied
to the control input of each function unit.

One potential disadvantage of TTA processors is that the
requirement for a relatively long instruction word during each
time period can mean that there is a need for a relatively large
amount of memory to be used to store these instruction words.
In accordance with an aspect of the present invention, the
instruction words are stored in compressed form in the pro-
gram memory 50, and then passed to an instruction decoder
54 in each cycle, before being passed to the control input of
each function unit, for subsequent use in determining the
operations performed by those units.

The ability to compress the required instruction words, and
store them in a compressed form, has an impact on the amount
of PLD resources required in order to implement the proces-
sor.

FIG. 3 is a flow chart, illustrating a method of compressing
the instruction words, in accordance with an aspect of the
invention.

The compression process is carried out, either by a tool or
manually, when the custom processor 30 is built. It is carried
out once for each custom processor design, and the processor
is supplied with the compressed instruction set stored in the
program memory 50. Several programs can be loaded into the
custom processor and run on it at different times after it has
been built, provided that all of those programs were analysed
when building the custom processor.

The process begins at step 70, in which the required
instruction set is received. The required instruction set may be
the complete set of instructions required in order to cause the
processor 30 to perform one specific application, or one group
of'applications. As described above, each instruction word of
the instruction set will contain bits to drive the control inputs
on the function units, and fields that provide operands to the
function units. Depending on the application, each of these
instructions may contain several tens or hundreds of bits.

The number of instruction words in the instruction set will
depend on the application or applications that the processor is
able to perform. However, as described above, in the case of
an Application Specific Processor, the complete instruction
set is known at the time that the functionality of the processor
is determined.

It will be appreciated that a real case will include a rela-
tively large number of instructions in the instruction set.
However, the invention will be further Illustrated with refer-

10

15

20

25

30

35

40

45

50

55

60

65

4
ence to a case where there are three instructions (I0-13), each
of which is six bits (BO-B5) long.

It will be noted that, in this example, the three instructions
comprise the whole instruction set. However, in other
examples, the instruction set may be divided into sections,
with each section then being compressed independentiy. This
may improve the degree of compression that can be achieved,
but at the expense of requiring a more complex decoder
hardware block 54.

It should also be noted that, in this illustrated case, the bits
of the instructions can be logical zeros or logical ones, or
could be such that their values are immaterial, that is, they are
“don’t care” logical values, although the invention still works
when there are no don’t care values.

The uncompressed instruction words in the illustrated case
are shown in the following table, in which ‘X’ indicates a
logical don’t care value.

BO Bl B2 B3 B4 BS
10 X 1 0 X 1 0
11 0 0 1 1 0 0
12 1 1 0 1 0 1

The instruction sequence is then analysed. In step 72, it is
determined which bits of the instruction words are always
zero, in each of the instruction words. In step 74, it is deter-
mined which bits of the instruction words are always one, in
each of the instruction words. It should be noted that, in steps
72 and 74, bits that have the logical don’t care value in one or
more of the instruction words can be considered as bits that
are always zero, or always one, as required.

In step 76, it is determined whether there are groups of bits
which always have the same value, in each of the instruction
words. In step 78, it is determined whether there is one or
more bit which is always the opposite of one or more other bit,
in each of the instruction words. Again, it should be noted
that, in steps 76 and 78, bits that have the logical don’t care
value in one or more of the instruction words can be consid-
ered as being the same as, or opposite to, another bit, as
required.

Thus, in the case of the instruction set illustrated in the
table above, there are no bits that are always zero. The bit B3
can be considered as being always one, because it has the
value one in the instructions 11 and 12, and its value is imma-
terial in the instruction I0.

Again, referring to the instruction set illustrated in the table
above, the bit pairs {B0, B1} and {B0, B5} can beregarded as
always the same as each other, because the value of the bit BO
is immaterial in the instruction 10. Also, the bit pairs {B0, B2}
and {B1, B2} can be regarded as always the opposite of each
other, again because the value of the bit BO is immaterial in
the instruction I0.

In step 80 of the process, any bits which are either stuck at
one or zero are removed from the program word, and bit pairs
involving stuck at one or zero bits are discarded.

In step 82, the remaining bits (that is, the bits {B0, B1, B2,
B4, B5} in this case) are organized into groups which are the
same as each other. For example, as mentioned above, when
considering don’t cares, B0 is the same as B1 and is also the
same as B5. However, B0, B1 and BS cannot all be grouped
together, because B1 and B5 are not the same. Therefore, in
the example considered here BO and B1 are identified to be
the same as each other. This identified “same as” group is then

US 9,047,080 B1

5

given one bit in the compressed word. It should be noted that
a “same as” group can consist of just one bit, e.g. BS in this
case.

It should be noted that the choice of BOand B1 as the “same
as” group, rather than BO and BS5, is arbitrary, although it is
possible that one choice will allow greater overall compres-
sion than the other, in which case it is that choice that should
be made.

In step 84, the process determines which bits are opposite,
in every instruction, the bits of one of the identified “same as”
groups. Thus, in this case, the bit B2 is always opposite both
B0 and B1, and therefore can be regarded as opposite this
“same as” group. These steps are repeated until all bits are
compressed as far as possible. In step 86, the compressed
instructions are then stored.

The following table shows the way in which, in the Illus-
trated case, this achieves compression of the data word.

CBO CB1 CB2
10 1 1 0
11 0 0 0
12 1 0 1

Thus, in this illustrated case, it is necessary to store only
three compressed bits, CB0O, CB1 and CB2, rather than the six
bits of each uncompressed instruction.

The program memory 50 therefore stores one compressed
instruction word corresponding to each instruction word in
the uncompressed instruction set, with the compressed
instruction words all being of the same length, and having
been compressed so as to remove any redundancy within the
instruction words of the instruction set.

It should be noted that FIG. 3 shows step 80, namely the
removal of any bits that are either stuck at one or zero from the
program word, being performed after steps 76 and 78, namely
the identification of the groups of bits which always have the
same value, in each of the instruction words, and the deter-
mination whether there is one or more bit which is always the
opposite of one or more other bit. However, it may instead be
advantageous to perform this removal step before identifying
groups of bits which always have the same value, and before
determining whether there is one or more bit which is always
the opposite of one or more other bit. Bits that are either stuck
at one or zero are already optimally compressed, and it is not
necessary to include them in the further analysis steps.

FIG. 4 is a schematic diagram, illustrating the decoder 54,
in the device of FIG. 2, in the case of this illustrated example.
Specifically, the bit CBO is used to provide the bits BO and B1
of the uncompressed instructions, and is passed through a
NOT logic gate 90 to provide the bit B2 of the uncompressed
instructions.

The bit B3 of the uncompressed instructions has been
identified as stuck at one, and so a “1”is supplied as the value
of the bit B3 of the uncompressed instructions.

This method did not allow any compression of the bits B4
and B5 in this illustrated case, and so the bits CB1 and CB2 of
the compressed instructions are used to provide the bits B4
and BS5 of the uncompressed instructions.

It can therefore be seen that the only extra hardware needed
to perform the decoding is the NOT gate 90. Moreover, in
many cases this inversion can be combined into the logic that
it is driving, and so no extra hardware would be needed.

The invention has been described above in relation to the
implementation of the processor in a Programmable Logic
Device. However, the processor shown in FIG. 2, or any

15

20

25

30

40

45

50

6

processor containing the decoder described with reference to
FIGS. 2 and 4, can equally be implemented in an ASIC
(Application Specific Integrated Circuit), including a struc-
tured ASIC, that is, an ASIC in which many of the standard
functions of the device are embedded into base layers of the
integrated circuit, while the functions specific to that particu-
lar device are provided by customization of the top layers of
the ASIC.
There are therefore provided a method of compressing an
instruction set, and a processor, that allow an efficient com-
pression of instructions, and hence a reduction in the amount
of memory that must be provided for storage, while also
permitting a relatively simple decompression method to be
used.
The invention claimed is:
1. A processor for compressing an instruction sequence,
wherein the instruction sequence includes a plurality of
instructions, each instruction comprising a first number of
bits in respective bit positions, the processor operating in
accordance with:
commands to perform at least one identification process on
the instruction sequence in order to identify relation-
ships between the bits in said bit positions among the
instructions of the instruction sequence, wherein the
identification process identifies pairs of bit positions in
the instructions of the instruction sequence which con-
tain opposite bit values from each other; and

commands to generate a compressed instruction sequence
comprising one compressed instruction corresponding
to each instruction of the instruction sequence based on
the identification process.

2. The processor of claim 1, wherein each compressed
instruction has the same length.

3. The processor of claim 1, wherein the instruction
sequence is divided into sections comprising a plurality of
instructions and each section is compressed independently.

4. The processor of claim 1, wherein the commands to
perform the at least one identification process on the instruc-
tion sequence include commands to identify groups of bit
positions in the instructions of the instruction sequence which
have an identical bit value.

5. The processor of claim 1, wherein the commands to
perform the at least one identification process on the instruc-
tion sequence include commands to remove bits in the
instructions of the instruction sequence which contain a same
bit value in each instruction of the instruction sequence.

6. The processor of claim 1, wherein the commands to
identify pairs of bit positions in the instructions of the instruc-
tion sequence which contain opposite bit values from each
other, identify pairs in each instruction.

7. A first processor for performing at least one predeter-
mined application, wherein the first processor comprises
memory for storing a compressed instruction sequence and
one or more functional units coupled to the memory through
a decoder, said compressed instruction sequence having been
obtained from a second processor operating in accordance
with:

commands to receive an instruction sequence, wherein the

instruction sequence includes a plurality of instructions,
each instruction comprising a first number of bits in
respective bit positions; and

commands to generate a compressed instruction sequence,

comprising one compressed instruction corresponding
to each instruction of the instruction sequence, by
manipulating groups of bits in said bit positions based on
identifying pairs of bit positions which have opposite bit
values from each other, wherein the commands to

US 9,047,080 B1

7

manipulate groups of bits in said bit positions include
commands to identify pairs of bit positions which have
the opposite bit values from each other in each instruc-
tion.

8. The first processor of claim 7, wherein each compressed
instruction obtained from the second processor comprises a
same second number of bits.

9. The first processor of claim 8, wherein the second num-
ber of bits is smaller than the first number of bits.

10. The first processor of claim 7, wherein the instruction
sequence is divided into sections comprising a plurality of
instructions and each section is compressed independently.

11. The first processor of claim 7, wherein the commands
to manipulate groups of bits in said bit positions include
commands to remove bits in the instructions of the instruction
sequence which contain a same bit value in each instruction.

12. The first processor of claim 7, wherein the commands
to manipulate groups of bits in said bit positions include
commands to identify groups of bit positions which contain
the same bit values as each other.

13. The first processor of claim 7, wherein the second
processor is implemented in a programmable logic device.

14. The first processor of claim A, wherein the decoder is
for decoding the compressed instruction sequence.

15. A processor, for performing at least one predetermined
application, wherein the processor comprises a decoder and
the decoder comprises:

an input for receiving a first number of bits of a compressed

instruction for each of a plurality of compressed instruc-
tions, each bit having a value;

logic circuitry for uncompressing the received first number

of bits by providing a fixed value for a same bit of each
uncompressed instruction regardless of values of the
first number of bits received at the input, wherein each
uncompressed instruction corresponds to a correspond-
ing one of the plurality of compressed instructions; and

20

30

8

an output for supplying the uncompressed instruction

sequence to a functional unit of the processor.

16. The processor of claim 15, wherein the logic circuitry is
determined at the time the functionality of the processor is
determined.

17.The processor of claim 15, wherein the logic circuitry is
further configured to identify a bit position of the uncom-
pressed instruction sequence that was not compressed.

18. The processor of claim 15, wherein each uncompressed
instruction in the uncompressed instruction sequence com-
prises a second number of bits.

19. The processor of claim 18, wherein the second number
of bits is greater than the first number of bits.

20. A first processor for performing at least one predeter-
mined application, wherein the first processor comprises
memory for storing a compressed instruction sequence and
one or more functional units coupled to the memory through
a decoder, said compressed instruction sequence having been
obtained from a second processor operating in accordance
with:

commands to receive an instruction sequence, wherein the

instruction sequence includes a plurality of instructions,
each instruction comprising a first number of bits in
respective bit positions, and wherein each compressed
instruction obtained from the second processor com-
prises a same second number of bits; and

commands to generate a compressed instruction sequence,

comprising one compressed instruction corresponding
to each instruction of the instruction sequence, by
manipulating groups of bits in said bit positions based on
identifying pairs of bit positions which have opposite bit
values from each other.

21. The first processor of claim 20, wherein the second
number of bits is smaller than the first number of bits.

#* #* #* #* #*

